Temperature Independent Isotropic EPR Spectra of [(CH₃)₄N]₂MnCl₄ and [(CH₃)₄N]₂FeCl₄ Single Crystals

F. Köksal, Ş. Bahadır, E. Başaran^a, and Y. Yerli

Physics Department, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey

^a Physics Department, Faculty of Arts and Sciences, High Technology Institute, Gebze, Istanbul, Turkey

received July 19, 1999

occur in this temperature interval.

Reprint requests to Prof. F. K.; Fax: 00903624576081.

Z. Naturforsch. **54a**, 557–558 (1999);

Electron paramagnetic resonance of $[(CH_3)_4N]_2MnCl_4$ and $[(CH_3)_4N]_2FeCl_4$ single crystals was studied between 20 and 400 K. The peak-to-peak derivative linewidths of these crystals seem not to change in this temperature interval and approximately 100 mT for $[(CH_3)_4N]_2MnCl_4$ and ~20 mT for $[(CH_3)_4N]_2$ FeCl₄. The spectra were found to be isotropic, with g = 2.0039 for $[(CH_3)_4N]_2MnCl_4$ and g = 2.0042 for $[(CH_3)_4N]_2FeCl_4$. This temperature independence is attributed to isotropic strong exchange interactions of Mn^{2+} and Fe^{2+} nuclei, and it seems that hindered rotation of the $MnCl_4^{2-}$ and $FeCl_4^{2-}$ tetrahedra does not

Key words: EPR, Exchange, Peak-to-peak linewidth, Temperature dependence, [MnCl₄]²⁻, [FeCl₄]²⁻.